3.152 \(\int \frac{\sqrt{a+a \sec (e+f x)}}{(c+d \sec (e+f x))^2} \, dx\)

Optimal. Leaf size=219 \[ -\frac{a^{3/2} \sqrt{d} (3 c+2 d) \tan (e+f x) \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a-a \sec (e+f x)}}{\sqrt{a} \sqrt{c+d}}\right )}{c^2 f (c+d)^{3/2} \sqrt{a-a \sec (e+f x)} \sqrt{a \sec (e+f x)+a}}+\frac{2 a^{3/2} \tan (e+f x) \tanh ^{-1}\left (\frac{\sqrt{a-a \sec (e+f x)}}{\sqrt{a}}\right )}{c^2 f \sqrt{a-a \sec (e+f x)} \sqrt{a \sec (e+f x)+a}}-\frac{a d \tan (e+f x)}{c f (c+d) \sqrt{a \sec (e+f x)+a} (c+d \sec (e+f x))} \]

[Out]

(2*a^(3/2)*ArcTanh[Sqrt[a - a*Sec[e + f*x]]/Sqrt[a]]*Tan[e + f*x])/(c^2*f*Sqrt[a - a*Sec[e + f*x]]*Sqrt[a + a*
Sec[e + f*x]]) - (a^(3/2)*Sqrt[d]*(3*c + 2*d)*ArcTanh[(Sqrt[d]*Sqrt[a - a*Sec[e + f*x]])/(Sqrt[a]*Sqrt[c + d])
]*Tan[e + f*x])/(c^2*(c + d)^(3/2)*f*Sqrt[a - a*Sec[e + f*x]]*Sqrt[a + a*Sec[e + f*x]]) - (a*d*Tan[e + f*x])/(
c*(c + d)*f*Sqrt[a + a*Sec[e + f*x]]*(c + d*Sec[e + f*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.222172, antiderivative size = 219, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.222, Rules used = {3940, 103, 156, 63, 206, 208} \[ -\frac{a^{3/2} \sqrt{d} (3 c+2 d) \tan (e+f x) \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a-a \sec (e+f x)}}{\sqrt{a} \sqrt{c+d}}\right )}{c^2 f (c+d)^{3/2} \sqrt{a-a \sec (e+f x)} \sqrt{a \sec (e+f x)+a}}+\frac{2 a^{3/2} \tan (e+f x) \tanh ^{-1}\left (\frac{\sqrt{a-a \sec (e+f x)}}{\sqrt{a}}\right )}{c^2 f \sqrt{a-a \sec (e+f x)} \sqrt{a \sec (e+f x)+a}}-\frac{a d \tan (e+f x)}{c f (c+d) \sqrt{a \sec (e+f x)+a} (c+d \sec (e+f x))} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + a*Sec[e + f*x]]/(c + d*Sec[e + f*x])^2,x]

[Out]

(2*a^(3/2)*ArcTanh[Sqrt[a - a*Sec[e + f*x]]/Sqrt[a]]*Tan[e + f*x])/(c^2*f*Sqrt[a - a*Sec[e + f*x]]*Sqrt[a + a*
Sec[e + f*x]]) - (a^(3/2)*Sqrt[d]*(3*c + 2*d)*ArcTanh[(Sqrt[d]*Sqrt[a - a*Sec[e + f*x]])/(Sqrt[a]*Sqrt[c + d])
]*Tan[e + f*x])/(c^2*(c + d)^(3/2)*f*Sqrt[a - a*Sec[e + f*x]]*Sqrt[a + a*Sec[e + f*x]]) - (a*d*Tan[e + f*x])/(
c*(c + d)*f*Sqrt[a + a*Sec[e + f*x]]*(c + d*Sec[e + f*x]))

Rule 3940

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_.), x_Symbol] :> Di
st[(a^2*Cot[e + f*x])/(f*Sqrt[a + b*Csc[e + f*x]]*Sqrt[a - b*Csc[e + f*x]]), Subst[Int[((a + b*x)^(m - 1/2)*(c
 + d*x)^n)/(x*Sqrt[a - b*x]), x], x, Csc[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && NeQ[b*c - a*d,
 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && IntegerQ[m - 1/2]

Rule 103

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(a +
 b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*f)), x] + Dist[1/((m + 1)*(b*
c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*(m + 1) - b*(d*e*(m + n + 2) +
 c*f*(m + p + 2)) - b*d*f*(m + n + p + 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && LtQ[m, -1] &&
 IntegerQ[m] && (IntegerQ[n] || IntegersQ[2*n, 2*p])

Rule 156

Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :>
 Dist[(b*g - a*h)/(b*c - a*d), Int[(e + f*x)^p/(a + b*x), x], x] - Dist[(d*g - c*h)/(b*c - a*d), Int[(e + f*x)
^p/(c + d*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{\sqrt{a+a \sec (e+f x)}}{(c+d \sec (e+f x))^2} \, dx &=-\frac{\left (a^2 \tan (e+f x)\right ) \operatorname{Subst}\left (\int \frac{1}{x \sqrt{a-a x} (c+d x)^2} \, dx,x,\sec (e+f x)\right )}{f \sqrt{a-a \sec (e+f x)} \sqrt{a+a \sec (e+f x)}}\\ &=-\frac{a d \tan (e+f x)}{c (c+d) f \sqrt{a+a \sec (e+f x)} (c+d \sec (e+f x))}-\frac{(a \tan (e+f x)) \operatorname{Subst}\left (\int \frac{a (c+d)-\frac{a d x}{2}}{x \sqrt{a-a x} (c+d x)} \, dx,x,\sec (e+f x)\right )}{c (c+d) f \sqrt{a-a \sec (e+f x)} \sqrt{a+a \sec (e+f x)}}\\ &=-\frac{a d \tan (e+f x)}{c (c+d) f \sqrt{a+a \sec (e+f x)} (c+d \sec (e+f x))}-\frac{\left (a^2 \tan (e+f x)\right ) \operatorname{Subst}\left (\int \frac{1}{x \sqrt{a-a x}} \, dx,x,\sec (e+f x)\right )}{c^2 f \sqrt{a-a \sec (e+f x)} \sqrt{a+a \sec (e+f x)}}+\frac{\left (a \left (\frac{a c d}{2}+a d (c+d)\right ) \tan (e+f x)\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a-a x} (c+d x)} \, dx,x,\sec (e+f x)\right )}{c^2 (c+d) f \sqrt{a-a \sec (e+f x)} \sqrt{a+a \sec (e+f x)}}\\ &=-\frac{a d \tan (e+f x)}{c (c+d) f \sqrt{a+a \sec (e+f x)} (c+d \sec (e+f x))}+\frac{(2 a \tan (e+f x)) \operatorname{Subst}\left (\int \frac{1}{1-\frac{x^2}{a}} \, dx,x,\sqrt{a-a \sec (e+f x)}\right )}{c^2 f \sqrt{a-a \sec (e+f x)} \sqrt{a+a \sec (e+f x)}}-\frac{\left (2 \left (\frac{a c d}{2}+a d (c+d)\right ) \tan (e+f x)\right ) \operatorname{Subst}\left (\int \frac{1}{c+d-\frac{d x^2}{a}} \, dx,x,\sqrt{a-a \sec (e+f x)}\right )}{c^2 (c+d) f \sqrt{a-a \sec (e+f x)} \sqrt{a+a \sec (e+f x)}}\\ &=\frac{2 a^{3/2} \tanh ^{-1}\left (\frac{\sqrt{a-a \sec (e+f x)}}{\sqrt{a}}\right ) \tan (e+f x)}{c^2 f \sqrt{a-a \sec (e+f x)} \sqrt{a+a \sec (e+f x)}}-\frac{a^{3/2} \sqrt{d} (3 c+2 d) \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a-a \sec (e+f x)}}{\sqrt{a} \sqrt{c+d}}\right ) \tan (e+f x)}{c^2 (c+d)^{3/2} f \sqrt{a-a \sec (e+f x)} \sqrt{a+a \sec (e+f x)}}-\frac{a d \tan (e+f x)}{c (c+d) f \sqrt{a+a \sec (e+f x)} (c+d \sec (e+f x))}\\ \end{align*}

Mathematica [C]  time = 28.4246, size = 2943, normalized size = 13.44 \[ \text{Result too large to show} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Sqrt[a + a*Sec[e + f*x]]/(c + d*Sec[e + f*x])^2,x]

[Out]

((d + c*Cos[e + f*x])^2*Sec[(e + f*x)/2]*Sec[e + f*x]^2*Sqrt[a*(1 + Sec[e + f*x])]*(-((d*Sin[(e + f*x)/2])/(c^
2*(c + d))) + (d^2*Sin[(e + f*x)/2])/(c^2*(c + d)*(d + c*Cos[e + f*x]))))/(f*(c + d*Sec[e + f*x])^2) - (2*Sqrt
[2]*Cos[(e + f*x)/4]^2*Sqrt[(-1 + Sqrt[2] - (-2 + Sqrt[2])*Cos[(e + f*x)/2])/(1 + Cos[(e + f*x)/2])]*(d + c*Co
s[e + f*x])^2*(c*(2*c + d)*EllipticF[ArcSin[Tan[(e + f*x)/4]/Sqrt[3 - 2*Sqrt[2]]], 17 - 12*Sqrt[2]] + 4*(c + d
)^2*EllipticPi[-3 + 2*Sqrt[2], -ArcSin[Tan[(e + f*x)/4]/Sqrt[3 - 2*Sqrt[2]]], 17 - 12*Sqrt[2]] - d*(3*c + 2*d)
*(EllipticPi[-(((-3 + 2*Sqrt[2])*(c + d))/(3*c + 2*Sqrt[2]*Sqrt[c*(c - d)] - d)), -ArcSin[Tan[(e + f*x)/4]/Sqr
t[3 - 2*Sqrt[2]]], 17 - 12*Sqrt[2]] + EllipticPi[((-3 + 2*Sqrt[2])*(c + d))/(-3*c + 2*Sqrt[2]*Sqrt[c*(c - d)]
+ d), -ArcSin[Tan[(e + f*x)/4]/Sqrt[3 - 2*Sqrt[2]]], 17 - 12*Sqrt[2]]))*Sec[(e + f*x)/2]*((Cos[(e + f*x)/2]*Sq
rt[Sec[e + f*x]])/(2*(c + d)*(d + c*Cos[e + f*x])) + (Cos[(3*(e + f*x))/2]*Sqrt[Sec[e + f*x]])/(2*(c + d)*(d +
 c*Cos[e + f*x])) + (d*Cos[(3*(e + f*x))/2]*Sqrt[Sec[e + f*x]])/(2*c*(c + d)*(d + c*Cos[e + f*x])))*Sec[e + f*
x]^2*Sqrt[a*(1 + Sec[e + f*x])]*Sqrt[3 - 2*Sqrt[2] - Tan[(e + f*x)/4]^2])/(c^2*(c + d)^2*f*(c + d*Sec[e + f*x]
)^2*((Sqrt[(-1 + Sqrt[2] - (-2 + Sqrt[2])*Cos[(e + f*x)/2])/(1 + Cos[(e + f*x)/2])]*(c*(2*c + d)*EllipticF[Arc
Sin[Tan[(e + f*x)/4]/Sqrt[3 - 2*Sqrt[2]]], 17 - 12*Sqrt[2]] + 4*(c + d)^2*EllipticPi[-3 + 2*Sqrt[2], -ArcSin[T
an[(e + f*x)/4]/Sqrt[3 - 2*Sqrt[2]]], 17 - 12*Sqrt[2]] - d*(3*c + 2*d)*(EllipticPi[-(((-3 + 2*Sqrt[2])*(c + d)
)/(3*c + 2*Sqrt[2]*Sqrt[c*(c - d)] - d)), -ArcSin[Tan[(e + f*x)/4]/Sqrt[3 - 2*Sqrt[2]]], 17 - 12*Sqrt[2]] + El
lipticPi[((-3 + 2*Sqrt[2])*(c + d))/(-3*c + 2*Sqrt[2]*Sqrt[c*(c - d)] + d), -ArcSin[Tan[(e + f*x)/4]/Sqrt[3 -
2*Sqrt[2]]], 17 - 12*Sqrt[2]]))*Sqrt[Sec[e + f*x]]*Tan[(e + f*x)/4])/(Sqrt[2]*c^2*(c + d)^2*Sqrt[3 - 2*Sqrt[2]
 - Tan[(e + f*x)/4]^2]) + (Sqrt[2]*Cos[(e + f*x)/4]*Sqrt[(-1 + Sqrt[2] - (-2 + Sqrt[2])*Cos[(e + f*x)/2])/(1 +
 Cos[(e + f*x)/2])]*(c*(2*c + d)*EllipticF[ArcSin[Tan[(e + f*x)/4]/Sqrt[3 - 2*Sqrt[2]]], 17 - 12*Sqrt[2]] + 4*
(c + d)^2*EllipticPi[-3 + 2*Sqrt[2], -ArcSin[Tan[(e + f*x)/4]/Sqrt[3 - 2*Sqrt[2]]], 17 - 12*Sqrt[2]] - d*(3*c
+ 2*d)*(EllipticPi[-(((-3 + 2*Sqrt[2])*(c + d))/(3*c + 2*Sqrt[2]*Sqrt[c*(c - d)] - d)), -ArcSin[Tan[(e + f*x)/
4]/Sqrt[3 - 2*Sqrt[2]]], 17 - 12*Sqrt[2]] + EllipticPi[((-3 + 2*Sqrt[2])*(c + d))/(-3*c + 2*Sqrt[2]*Sqrt[c*(c
- d)] + d), -ArcSin[Tan[(e + f*x)/4]/Sqrt[3 - 2*Sqrt[2]]], 17 - 12*Sqrt[2]]))*Sqrt[Sec[e + f*x]]*Sin[(e + f*x)
/4]*Sqrt[3 - 2*Sqrt[2] - Tan[(e + f*x)/4]^2])/(c^2*(c + d)^2) - (Sqrt[2]*Cos[(e + f*x)/4]^2*(c*(2*c + d)*Ellip
ticF[ArcSin[Tan[(e + f*x)/4]/Sqrt[3 - 2*Sqrt[2]]], 17 - 12*Sqrt[2]] + 4*(c + d)^2*EllipticPi[-3 + 2*Sqrt[2], -
ArcSin[Tan[(e + f*x)/4]/Sqrt[3 - 2*Sqrt[2]]], 17 - 12*Sqrt[2]] - d*(3*c + 2*d)*(EllipticPi[-(((-3 + 2*Sqrt[2])
*(c + d))/(3*c + 2*Sqrt[2]*Sqrt[c*(c - d)] - d)), -ArcSin[Tan[(e + f*x)/4]/Sqrt[3 - 2*Sqrt[2]]], 17 - 12*Sqrt[
2]] + EllipticPi[((-3 + 2*Sqrt[2])*(c + d))/(-3*c + 2*Sqrt[2]*Sqrt[c*(c - d)] + d), -ArcSin[Tan[(e + f*x)/4]/S
qrt[3 - 2*Sqrt[2]]], 17 - 12*Sqrt[2]]))*Sqrt[Sec[e + f*x]]*(((-2 + Sqrt[2])*Sin[(e + f*x)/2])/(2*(1 + Cos[(e +
 f*x)/2])) + ((-1 + Sqrt[2] - (-2 + Sqrt[2])*Cos[(e + f*x)/2])*Sin[(e + f*x)/2])/(2*(1 + Cos[(e + f*x)/2])^2))
*Sqrt[3 - 2*Sqrt[2] - Tan[(e + f*x)/4]^2])/(c^2*(c + d)^2*Sqrt[(-1 + Sqrt[2] - (-2 + Sqrt[2])*Cos[(e + f*x)/2]
)/(1 + Cos[(e + f*x)/2])]) - (Sqrt[2]*Cos[(e + f*x)/4]^2*Sqrt[(-1 + Sqrt[2] - (-2 + Sqrt[2])*Cos[(e + f*x)/2])
/(1 + Cos[(e + f*x)/2])]*(c*(2*c + d)*EllipticF[ArcSin[Tan[(e + f*x)/4]/Sqrt[3 - 2*Sqrt[2]]], 17 - 12*Sqrt[2]]
 + 4*(c + d)^2*EllipticPi[-3 + 2*Sqrt[2], -ArcSin[Tan[(e + f*x)/4]/Sqrt[3 - 2*Sqrt[2]]], 17 - 12*Sqrt[2]] - d*
(3*c + 2*d)*(EllipticPi[-(((-3 + 2*Sqrt[2])*(c + d))/(3*c + 2*Sqrt[2]*Sqrt[c*(c - d)] - d)), -ArcSin[Tan[(e +
f*x)/4]/Sqrt[3 - 2*Sqrt[2]]], 17 - 12*Sqrt[2]] + EllipticPi[((-3 + 2*Sqrt[2])*(c + d))/(-3*c + 2*Sqrt[2]*Sqrt[
c*(c - d)] + d), -ArcSin[Tan[(e + f*x)/4]/Sqrt[3 - 2*Sqrt[2]]], 17 - 12*Sqrt[2]]))*Sec[e + f*x]^(3/2)*Sin[e +
f*x]*Sqrt[3 - 2*Sqrt[2] - Tan[(e + f*x)/4]^2])/(c^2*(c + d)^2) - (2*Sqrt[2]*Cos[(e + f*x)/4]^2*Sqrt[(-1 + Sqrt
[2] - (-2 + Sqrt[2])*Cos[(e + f*x)/2])/(1 + Cos[(e + f*x)/2])]*Sqrt[Sec[e + f*x]]*Sqrt[3 - 2*Sqrt[2] - Tan[(e
+ f*x)/4]^2]*((c*(2*c + d)*Sec[(e + f*x)/4]^2)/(4*Sqrt[3 - 2*Sqrt[2]]*Sqrt[1 - Tan[(e + f*x)/4]^2/(3 - 2*Sqrt[
2])]*Sqrt[1 - ((17 - 12*Sqrt[2])*Tan[(e + f*x)/4]^2)/(3 - 2*Sqrt[2])]) - ((c + d)^2*Sec[(e + f*x)/4]^2)/(Sqrt[
3 - 2*Sqrt[2]]*Sqrt[1 - Tan[(e + f*x)/4]^2/(3 - 2*Sqrt[2])]*Sqrt[1 - ((17 - 12*Sqrt[2])*Tan[(e + f*x)/4]^2)/(3
 - 2*Sqrt[2])]*(1 - ((-3 + 2*Sqrt[2])*Tan[(e + f*x)/4]^2)/(3 - 2*Sqrt[2]))) - d*(3*c + 2*d)*(-Sec[(e + f*x)/4]
^2/(4*Sqrt[3 - 2*Sqrt[2]]*Sqrt[1 - Tan[(e + f*x)/4]^2/(3 - 2*Sqrt[2])]*Sqrt[1 - ((17 - 12*Sqrt[2])*Tan[(e + f*
x)/4]^2)/(3 - 2*Sqrt[2])]*(1 + ((-3 + 2*Sqrt[2])*(c + d)*Tan[(e + f*x)/4]^2)/((3 - 2*Sqrt[2])*(3*c + 2*Sqrt[2]
*Sqrt[c*(c - d)] - d)))) - Sec[(e + f*x)/4]^2/(4*Sqrt[3 - 2*Sqrt[2]]*Sqrt[1 - Tan[(e + f*x)/4]^2/(3 - 2*Sqrt[2
])]*Sqrt[1 - ((17 - 12*Sqrt[2])*Tan[(e + f*x)/4]^2)/(3 - 2*Sqrt[2])]*(1 - ((-3 + 2*Sqrt[2])*(c + d)*Tan[(e + f
*x)/4]^2)/((3 - 2*Sqrt[2])*(-3*c + 2*Sqrt[2]*Sqrt[c*(c - d)] + d)))))))/(c^2*(c + d)^2)))

________________________________________________________________________________________

Maple [B]  time = 1.534, size = 97143, normalized size = 443.6 \begin{align*} \text{output too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sec(f*x+e))^(1/2)/(c+d*sec(f*x+e))^2,x)

[Out]

result too large to display

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(f*x+e))^(1/2)/(c+d*sec(f*x+e))^2,x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [A]  time = 13.7784, size = 3494, normalized size = 15.95 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(f*x+e))^(1/2)/(c+d*sec(f*x+e))^2,x, algorithm="fricas")

[Out]

[-1/2*(2*c*d*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*cos(f*x + e)*sin(f*x + e) - ((3*c^2 + 2*c*d)*cos(f*x + e)
^2 + 3*c*d + 2*d^2 + (3*c^2 + 5*c*d + 2*d^2)*cos(f*x + e))*sqrt(-a*d/(c + d))*log((2*(c + d)*sqrt(-a*d/(c + d)
)*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*cos(f*x + e)*sin(f*x + e) + (a*c + 2*a*d)*cos(f*x + e)^2 - a*d + (a*
c + a*d)*cos(f*x + e))/(c*cos(f*x + e)^2 + (c + d)*cos(f*x + e) + d)) - 2*((c^2 + c*d)*cos(f*x + e)^2 + c*d +
d^2 + (c^2 + 2*c*d + d^2)*cos(f*x + e))*sqrt(-a)*log((2*a*cos(f*x + e)^2 - 2*sqrt(-a)*sqrt((a*cos(f*x + e) + a
)/cos(f*x + e))*cos(f*x + e)*sin(f*x + e) + a*cos(f*x + e) - a)/(cos(f*x + e) + 1)))/((c^4 + c^3*d)*f*cos(f*x
+ e)^2 + (c^4 + 2*c^3*d + c^2*d^2)*f*cos(f*x + e) + (c^3*d + c^2*d^2)*f), -1/2*(2*c*d*sqrt((a*cos(f*x + e) + a
)/cos(f*x + e))*cos(f*x + e)*sin(f*x + e) + 4*((c^2 + c*d)*cos(f*x + e)^2 + c*d + d^2 + (c^2 + 2*c*d + d^2)*co
s(f*x + e))*sqrt(a)*arctan(sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*cos(f*x + e)/(sqrt(a)*sin(f*x + e))) - ((3*
c^2 + 2*c*d)*cos(f*x + e)^2 + 3*c*d + 2*d^2 + (3*c^2 + 5*c*d + 2*d^2)*cos(f*x + e))*sqrt(-a*d/(c + d))*log((2*
(c + d)*sqrt(-a*d/(c + d))*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*cos(f*x + e)*sin(f*x + e) + (a*c + 2*a*d)*c
os(f*x + e)^2 - a*d + (a*c + a*d)*cos(f*x + e))/(c*cos(f*x + e)^2 + (c + d)*cos(f*x + e) + d)))/((c^4 + c^3*d)
*f*cos(f*x + e)^2 + (c^4 + 2*c^3*d + c^2*d^2)*f*cos(f*x + e) + (c^3*d + c^2*d^2)*f), -(c*d*sqrt((a*cos(f*x + e
) + a)/cos(f*x + e))*cos(f*x + e)*sin(f*x + e) - ((3*c^2 + 2*c*d)*cos(f*x + e)^2 + 3*c*d + 2*d^2 + (3*c^2 + 5*
c*d + 2*d^2)*cos(f*x + e))*sqrt(a*d/(c + d))*arctan((c + d)*sqrt(a*d/(c + d))*sqrt((a*cos(f*x + e) + a)/cos(f*
x + e))*cos(f*x + e)/(a*d*sin(f*x + e))) - ((c^2 + c*d)*cos(f*x + e)^2 + c*d + d^2 + (c^2 + 2*c*d + d^2)*cos(f
*x + e))*sqrt(-a)*log((2*a*cos(f*x + e)^2 - 2*sqrt(-a)*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*cos(f*x + e)*si
n(f*x + e) + a*cos(f*x + e) - a)/(cos(f*x + e) + 1)))/((c^4 + c^3*d)*f*cos(f*x + e)^2 + (c^4 + 2*c^3*d + c^2*d
^2)*f*cos(f*x + e) + (c^3*d + c^2*d^2)*f), -(c*d*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*cos(f*x + e)*sin(f*x
+ e) + 2*((c^2 + c*d)*cos(f*x + e)^2 + c*d + d^2 + (c^2 + 2*c*d + d^2)*cos(f*x + e))*sqrt(a)*arctan(sqrt((a*co
s(f*x + e) + a)/cos(f*x + e))*cos(f*x + e)/(sqrt(a)*sin(f*x + e))) - ((3*c^2 + 2*c*d)*cos(f*x + e)^2 + 3*c*d +
 2*d^2 + (3*c^2 + 5*c*d + 2*d^2)*cos(f*x + e))*sqrt(a*d/(c + d))*arctan((c + d)*sqrt(a*d/(c + d))*sqrt((a*cos(
f*x + e) + a)/cos(f*x + e))*cos(f*x + e)/(a*d*sin(f*x + e))))/((c^4 + c^3*d)*f*cos(f*x + e)^2 + (c^4 + 2*c^3*d
 + c^2*d^2)*f*cos(f*x + e) + (c^3*d + c^2*d^2)*f)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{a \left (\sec{\left (e + f x \right )} + 1\right )}}{\left (c + d \sec{\left (e + f x \right )}\right )^{2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(f*x+e))**(1/2)/(c+d*sec(f*x+e))**2,x)

[Out]

Integral(sqrt(a*(sec(e + f*x) + 1))/(c + d*sec(e + f*x))**2, x)

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(f*x+e))^(1/2)/(c+d*sec(f*x+e))^2,x, algorithm="giac")

[Out]

Timed out